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Abstract—In Case Based Reasoning (CBR), knowledge 
acquisition plays an important role as it allows to progressively 
improve the system’s competencies. The case-based reasoning 
(CBR) is to solve a problem by remembering and adapting past 
cases already resolved. The CBR systems handle various kinds of 
knowledge: the case, the domain knowledge, knowledge of 
similarity and adaptation. The cases are collected in a gradual 
manner when using the system and the case base is enriched 
incrementally, while other types of knowledge are typically 
acquired when the system design. In particular the domain 
knowledge. 
This paper presents an approach for acquiring domain 
knowledge-based adaptation system failures. This approach has 
been implemented in a prototype, called FRAKAS, using the 
description logic. 
 
Keywords —Conservative adaptation, description logic, 
reasoning from case, based reasoning domain knowledge, theory 
of revision. 

I. INTRODUCTION 

    Case-based reasoning (CBR) is a reasoning  paradigm 
which consists in solving new problems by adapting solutions 
of previously solved problems. This process is supported by 
various knowledge used to reason on cases. In particular, 
adaptation knowledge is of major importance: it is used during 
the retrieval step to retrieve a good source case (e.g. a case 
easy to adapt) and, of course, during the adaptation step to 
build the solution to the current problem. Unfortunately, 
knowledge management in CBR is still a difficult problem. 
    In Case Based Reasoning (CBR), knowledge acquisition 
plays an important role as it allows to progressively improve 
the system’s competencies. One of the approaches of 
knowledge acquisition consists in performing it while the 
system is used to solve a problem. An advantage of this 
strategy is that it is not to constraining for the expert: the 
system exploits its interactions to acquire pieces of knowledge 
it needs to solve the current problem and takes the opportunity 
to learn this new knowledge for future use. 
    This paper presents an approach to acquire domain 
knowledge of a CBR system. Specifically, this acquisition is 
done in sessions of case-based reasoning: when the target 
problem is solved by adapting the retrieved case, it is 
presented to the user who can demonstrate the fact that the 
solution is unsatisfactory and why it is, and it is the failure 
situations of interest here, the solution may be inconsistent  

 
 
the knowledge of the expert or may be only partial (missing 
the user information in order to exploit this solution 
completely). 
   This new knowledge is used to repair and adaptations failed 
to prevent similar failures in future arguments. Therefore, this 
work concerns the adaptation stage of CBR in [1], [2].  
 
The remainder of this paper is organized as following. In 
Section 2, we present a brief review of the case-based 
reasoning, we introduce and discuss the issues and objectives 
of our research in Section 3. In Section 4, these objectives 
were implemented in a prototype called FRAKAS. Finally, 
Section 5 concludes this paper. 
 

II. CASE BASED REASONING 

    In Case based reasoning, cases are generally represented by 
couples problem-solution, if a source will be denoted by srce -
case = (srce; Sol (srce)) is the part where srce problem and Sol 
(srce) his party solution. The target case, where only the target 
problem is known if target = (target?), The adaptation consists 
in determining a solution Sol (tgt) from target srce-case for 
target-case =completed (target; Sol (tgt)). 
    This representation is based on the assumption that the 
representation of a source case in  some problem and some 
solution can be uniquely independent of the target case. 
    Case-based reasoning systems are knowledge-based 
systems (KBS) which, if we follow Richter’s proposition [3], 
make use of four distinct knowledge sources: domain 
knowledge, cases, similarity knowledge and adaptation 
knowledge. But one can have an unified view of the 
knowledge involved in CBR systems as there exists close 
relations between the different knowledge containers. 
 
    Case based reasoning (CBR) is a paradigm of problem-
solving which uses past experiences to solve new problems.  
Reuse of experience constitutes the main specificity and 
strength of CBR: reasoning bases itself on remembering and 
reusing past situations rather than on the exclusive use of 
formal knowledge of the domain. The exploitation of past 
situations is often profitable, particularly when knowledge of 
the domain is incomplete: experience still offers a “basis” for 
the solution. Of course CBR does not always give the ideal 
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solution to the problem but, if it has the experience of this 
problem, it always offers a solution. 
This solution, although imperfect, is nearly always 
satisfactory in real cases. The basic CBR  principle, “to solve 
a  target problem, retrieve a source case and adapt it”, can be 
summarized as in figure 1. 
 
 

 
 

Fig. 1  CBR classical paradigm. 
 

Cycle of reasoning in CBR: 
The principle of CBR, reusing a past problem-solving 
experience to solve a similar problem, is simple, but the 
implementation of this principle remains complex and raises a 
certain number of questions. How do we represent an 
experience? What is a similar problem? How do we reuse an 
experience and adapt it to the present situation? What can be 
retained from a specific problem-solving experience?  
At the highest level of generality, a general CBR cycle may be 
described by the following four processes: 
 
1. Retrieve similar cases to the problem description. 
2. Reuse a solution suggested by a similar case. 
3. Revise or adapt that solution to better fit the new problem 
if necessary. 
4. Retain the new solution once it has been confirmed or 
validated. 
 
A new problem is solved by retrieving  one or more 
previously experienced cases, reusing the case in one way or 
another, revising the solution based on reusing a previous 
case, and retaining the new experience by incorporating it into 
the existing knowledge-base (case-base). The four processes 
each involve a number of more specific steps, which will be 
described in the task model. In figure 2, this cycle is 
illustrated 

 
 

 
Fig. 2   A CBR cycle (Aamodt-Plaza-94) 

 
An initial description of a problem (top of figure) defines a 
new case. This new case is used to RETRIEVE a case from 
the collection of previous cases. The retrieved case is 
combined with the new case - through REUSE - into a solved 
case, i.e. a proposed solution to the initial problem. Through 
the REVISE process this solution is tested for success, e.g. by 
being applied to the real world environment or evaluated by a 
teacher, and repaired if failed. During RETAIN, useful 
experience is retained for future reuse, and the case base is 
updated by a new learned case, or by modification ofsome 
existing cases[9],[20]. 

 
    We note SDK (system domain knowledge domain) : SDK 
expresses knowledge believed to be correct but not necessarily 
complete. In particular, SDK gives necessary conditions for a 
case to be lawful. [3], [4]. 
 
A. Acquiring CBR knowledge 
Solutions produced by CBR systems may not be satisfactory 
because of either a lack of sufficient knowledge or imperfectly 
described knowledge, leading to reasoning failures.Thus, 
many research work address the learning component in CBR 
systems along several perspectives. 
One of these perspectives characterizes the different 
knowledge containers targeted by the learning process [3]: 
case’s vocabulary, cases, similarity and solution 
transformation (i.e. adaptation knowledge). Some approaches 
consider similarity and adaptation knowledge as distinct and 
learn them separately [7]. We defend the idea that, ideally, 
only domain and adaptation knowledge should be learned and 
similarity knowledge should be deduced from adaptation 
knowledge. 
Another perspective characterizes the knowledge source used 
by the learning process [8]. Some approaches use the content 
of the knowledge containers, in particular those who rely on 
machine-learning or "off-line" techniques in order to explicit 
knowledge. Other "on-line" approaches, by contrast, aim at 
acquiring new knowledge that is not already in the system 
through interactions with the environment . Learning takes 
place during the use of the system and aims at acquiring 
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domain knowledge. The evaluation of the adapted solution 
may highlight the fact that it does not meet the requirements 
of the target problem. In this situation, a reasoning failure 
occurs and is handled by a learning process. The expert is 
involved in the identification of faulty knowledge and a repair 
process is triggered to correct it. 

III.  PROBLEMATIC AND OBJECTIVES 

    Between the domain knowledge (SDK) available to the 
CBR system, and knowledge of the expert, there is a big 
difference from [5], since the domain knowledge are available 
but are not sufficient, it is therefore necessary to acquire new 
ones. This problem is impossible to solve completely for most 
applications, but we can still learn new domain knowledge 
thanks to the expert. 
    The general principle here is to do reasoning and learning 
takes place when using the system and aims to acquire domain 
knowledge. When the solution is evaluated it may be unable 
to solve the problem: it is then a failure of reasoning that is the 
subject of a process of learning from failure. The expert 
comes to identify parts of solution inconsistent. 
    Two types of failures were identified in this paper and lead 
to acquisition of knowledge: 
-Failed due to an inconsistency of the solution with the 
knowledge of the expert. The expert said that, given what he 
knows of domain knowledge, the affirmation of the solution 
of the target problem is inconsistent. This may mean that the 
solution itself is incoherent. 
-Failure to have a solution that is only partial. If the solution 
proposed by the adaptation target is partial, and therefore not 
fully satisfactory, the interaction with the expert can help 
clarify it.[21] 
    In this paper we used system FRAKAS, so enhancing the 
use of this system in a real situation and to reduce complexity 
and facilitate the work of the expert, it will be necessary to 
install a new version of  FRAKAS, using the description logic. 
Thus, we proposed an algorithm for knowledge base revision 
in description logics. We chose the formalism of Description 
logic because of its ability to dual representation and 
reasoning about knowledge. 

IV.   FRAKAS (FAILURE ANALYSIS FOR DOMAIN KNOWLEDGE 

ACQUISITION)  

    FRAKAS is an illustration of the FIKA principles (Failure-
driven Interactive Knowledge Acquisition, FIKA defines a 
general approach for interactive and opportunistic acquisition 
of knowledge in case-based reasoning.). It defines strategies to 
interactively learn domain knowledge on-line, by exploiting 
reasoning failures and their correction. The learning process 
occurs during a CBR session. The target problem is 
automatically solved by adaptation of a retrieved case and 
then, the proposition is presented to the “user” who, 
depending on his expertise level, is supposed to highlight the 
part, in the proposition, that is not satisfactory. 
    FRAKAS offers an interactive mechanism that aims at 
incorporating new pieces of domain knowledge. The new 
knowledge is then added to the system to prevent similar 

failures occurring in future reasonings and, especially, to 
perform a new adaptation with a more complete knowledge. 
As a result, the system progressively learns new pieces of 
knowledge and becomes more and more effective.[6][10] 
    FRAKAS uses a technique of guided retrieval adaptability. 
When a source case is remembered, it uses conservative 
adaptation to infer Sol (tgt) from the target problem and 
source case. The conservative adaptation is to modify the 
source case in a minimal way to be both consistent with the 
knowledge base and the target problem. The result of the 
adaptation is presented to the expert who can then detect an 
inconsistency of the proposed solution with personal 
knowledge.  
The FRAKAS approach aims to facilitate the acquisition of 
domain knowledge. This knowledge, although used to adapt 
cases, is not supposed to be linked to the cases. In FRAKAS, 
the identification of knowledge to be acquired is done, not by 
analysing the reasoning, but by analysing the solution. In the 
case of failure, the solution is analysed by the expert who 
must identify inconsistencies in the solution using his own 
knowledge. The system is able to infer, from the analysis of 
these inconsistencies, new knowledge which will allow it to 
avoid repeating the mistake in future. 
 
Algorithm of  FRAKAS. 
Input: tgt, SDK, CB 
 (srce; Sol(srce))   Retr ieval(SDK; tgt; CB) 
Sol(tgt)   Adaptation(SDK; (srce; Sol(srce)); tgt) 
{Taking into account type 1 failures} 
while  Sol(tgt) is inconsistent  do 
     The expert points out Inc {Inc: the inconsistency} 
     The expert gives a textual explanation of the failure (stored    
     for later use) 
     ’Inc is false’ is integrated to SDK 
     Sol(tgt)   Adaptation(SDK; (srce; Sol(srce)); tgt) 
end while 
{Taking into account type 2 failures} 
 if Sol(tgt) is fully specified then 
      Exit 
end if 
 while There is an inconsistent interpretation of Sol(tgt) do 
     {Justification of this loop:} 
     {The modification of the knowledge base can generate new  
      inconsistent adaptations} 
      for all inconsistent interpretation do 
            The expert points out Inc 
            The expert gives a textual explanation of the failure   
            (stored for later use) 
           ’Inc is false’ is integrated to SDK 
      end for 
      Sol(tgt)   Adaptation(SDK; (srce; Sol(srce)); tgt)  
end while 
 
Reasoning in FRAKAS.  
An assumption is made that the CBR system is capable of 
performing consistent reasoning in the cases using the 
available domain knowledge. The proposed built by the 
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system is presented to the oracle who is able to decide if it is 
valid or not (i.e., if the proposition works or not). The role of 
the expert is then to highlight faulty knowledge if the 
proposition is not satisfactory, which amounts to highlighting 
the parts of the proposition that are not correct[10]. 
The knowledge acquisition in FRAKAS is: 
- Opportunistic, as it exploits failures to trigger a learning 
process; 
- Interactive, as it involves the user during the CBR session, 
through interactions; 
- Incremental, as pieces of knowledge are added progressively 
to the domain knowledge. 
The knowledge learned by a system implementing the 
FRAKAS principles is used to repair failed adaptations and to 
improve the quality of the solution proposed for the current 
problem. This knowledge is also stored and reused to prevent 
similar failures from occurring again in further reasonings. 
 
FRAKAS principles 
The FRAKAS principles are illustrated in figure 3 
 

 
 

Fig. 3  FRAKAS principles 
 

This figure describes the main FRAKAS principles and the 
links with the knowledge base (on the right of the figure). 
Circles represent cases, rounded rectangles are processes (the 
expert analysis involves interactions between the expert and 
the system). Inc is a piece of knowledge that is built during 
the reasoning cycle and that is going to be added to the 
knowledge base. 
The CBR process exploits a knowledge base to produce a 
candidate solution. When the candidate solution is judged not 
valid (i.e. it does not work) by the oracle, the expert has to 
identify a subset of inconsistent knowledge (denoted Inc on 
the figure). From this subset of knowledge, the system is able 
to learn a new piece of knowledge. This new piece of 
knowledge is added to the knowledge base. The improved 
knowledge base allows the system to produce a new candidate 
solution for the current problem. The process is iterated until 
the expert validates a solution proposed by the systems, i.e. 
until the system finds a working solution[10]. 
The CBR process implemented in FRAKAS exploits a case 
base together with the system domain knowledge base 
(denoted by SDK). The cases contained in the case base are 
assumed to be consistent with SDK, they often contain pieces 

of knowledge coming from experience. These pieces of 
knowledge cannot always be explained by the domain 
knowledge but are nonetheless often very useful, that is why 
they are valuable. 
A. The used Formalism :  ALC Description Logic     
    Description Logics (DL) were first developed to provide a 
formal meaning, declarative semantic networks and frames, 
and to show how such structured representations can be 
provided with effective  tools of reasoning. They form a 
family of knowledge representation formalisms that can be 
used to represent and reason about the knowledge of an 
application domain in a structured and formally well 
understood. They are increasingly important in knowledge 
representation. [12] 
Syntax: 
    The elements of the representation language ALC are the 
concepts, roles, bodies and forms. Intuitively, a concept 
represents a subset of the domain of interpretation. A concept 
is either an atomic concept (ie,d. A concept name), or a 
conceptual expression of one of the following form: 

Т, ⊥, C ⊓ D, ￢C, C ⊔ D,∀ r .C, ∃ r .C where C and D are 

concepts (atomic or not) and r is a role. In a concept can be 
associated with a first-order formula with one free variable x. 
    For BC 'Ψ' in LAC is a finite set of formulas ALC. The 
terminological part (TBox or terminology box) of Ψ is the set 
of its formulas terminology. The assertionnelle party (or for 
ABox assertional box) of Ψ is the set of its formulas 
assertionnelles. 
 

 
    

Fig. 4  Architecture of a knowledge representation system based on 
Description Logics. 

 
 

 An interpretation is a pair I = (∆I , ·I )  where  ∆I is a 
nonempty set (the domain of interpretation) and where ·I 
associated with a concept C a subset CI of ∆I , a role r in a 
relationship binary rI on  ∆I  (for x, y Є ∆I , x is related to y is 
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denoted by rI , (x, y) Є rI) and, to an instance has an element  
aI of rI. [12] 
Given an interpretation I, we say that I satisfies a concept 

axiom C ⊑ D (respectively, a role inclusion axiom R ⊑  S) if 
CI
⊆ DI (respectively, RI ⊆ SI). An interpretation I is called a 

model of a TBox T , written I |= T , iff it satisfies each axiom 
in T . We use Mod(T ) to denote all the models of a TBox T . 
Two TBoxes T1 and T2 are equivalent, written T1 ≡ T2, iff 
Mod(T1) = Mod(T2). A named concept C in a terminology T is 
unsatisfiable  iff, for each model  I of T , CI = Φ. A 
terminology T is inconsistent iff it does not have a model, and 
it is incoherent iff there exists an unsatisfiable named concept 
in T . Incoherence is a kind of logical contradiction which has 
been widely discussed. When there is a concept in a TBox, if 
the TBox is inconsistent, then it must be incoherent. 
Inferences: 
    DL system doesn’t store only terminologies and assertions, 
but also offers the services of inference. Mainly dependent on 
the reasoning in a DL is to discover implicit knowledge from 
explicit knowledge by inference. The services are also 
inference made on all the TBox and as well as the ABox. 
Basic inferences about the TBox: 
Given a TBox T, C and D two concepts, then the typical tasks 
of reasoning on T consist of: 
- Checking satisfiability of a concept: A concept C is 
satisfiable (or consistent) with respect to a TBox T if there 
exists a model I of the TBox T such that CI ≠ Ø; (I is a model 
C) , we write I | = C 
- Checking subsumption relation between two concepts: C 
subsumes D (D is considered the concept more general than 
C), written C ⊑D, with respect to TBox T iff CI⊑ DI for all 

models I of the TBox T In this case, we write C ⊑T D or T | = 

C ⊑ D. For example, PARENT ⊑PERSON. The subsumption 

relation presents the service more complex classification: 
given a concept C and a TBox T, for all concepts D of T 
determine whether D subsumes C or D is subsumed by C. 
Intuitively, this determination research relationships implicit 
in the terminology. In particular, the classification, a basic 
task in building up a new terminology that expresses the 
concept in the appropriate place in the taxonomic hierarchy of 
concepts, can be accomplished by checking the subsumption 
relation between each concept defined in the hierarchy and 
expression of the new concept. 
-Verification of equivalence between two concepts: Two 
concepts C and D are equivalent, written C ≡ D, with respect 
to T iff CI

≡DI for all models I of TBox T. In this case, we 
write C≡T D or T | = C ≡ D 
- Verification of disjunction between two concepts: Two 
concepts C and D are disjoint, written C ≠ D, compared to a 
TBox T iff CI

∩DI =Ø, for all models I of TBox T. 
In fact, checking the satisfiability of concept is a main 
inference. other inferences for concepts can be reduced to (in) 
satisfiability and vice versa. 
Basic inferences about the ABox: 

    ABox reasoning about a focus on testing the correctness of 
a domain model. Must perform two tasks: 
- Checking instance: whether an individual has an ABox A is 
an instance of a given concept description C (a Є CI), written 
A | = C (a). 
- The consistency check: An ABox A is consistent with 
respect to a TBox T, if there is an interpretation that is a 
model of both A and T. 
Satisfiability of an ABox is to test whether, given a TBox T, 
ABox A has a model. Important inferences can be reduced to 
this inference, p. ex. T | = C ⊑ D iff A = {(CП￢D)(a)}  is not 

satisfiable modulo T, where a is a new instance (can’t be 
found in (C П￢D),  or in T). [11] 

 
A. Conservative Adaptation 
   Adaptation is a step of some case-based reasoning (CBR) 
systems that consists in modifying a source case in order to 
suit a new situation, the target case. An approach to adaptation 
consists in using a belief revision operator, i.e., an operator 
that modifies minimally a set of beliefs in order to be 
consistent with some actual knowledge[19] . 
    The idea is to consider the belief “The source case solves 
the target case” and then to revise it with the constraints given 
by the target case and the domain knowledge. 
    The adaptation performed by FRAKAS is conservative 
adaptation (CA) (see [14] for more details). In this adaptation, 
the approach is to make changes "minimum" of the source 
case to be consistent with both the target problem and the 
domain knowledge. It is formalized through the notion of 
revision operator [11],[17],[18],[15], [13]: a revision operator 
'○' combines two knowledge bases Ψ and µ knowledge base Ψ 
○ µ which, intuitively , is obtained by minimal change on Ψ to 
be consistent with µ.[16] 
    In this paper, We consider only revision of terminologies in 
DLs and we have adapted the  Dalal revision operator for 
revising terminologies 
To adapt Dalal’s revision operator to DLs, we need to define 
the ”difference set” between two models. By treating each 
concept name as a propositional variable, we can define the 
difference between two models in DLs in a similar way as the 
difference set between two models in propositional logic. 
Suppose we want to revise a TBox T1 using another one T2. 
Following the idea of Dalal’s revision operator, in our revision 
operator, we revise some models of T1 to make them as 
models of T2.( see [22,23] for more details) 
We consider postulates for revision operators in DLs given in 
[22], which are reformulated from Katsuno and Mendelzon’s 
postulates (KM postulates) in [24]. 

(G1) Mod(T1◦T2) ⊆ Mod(φ) for all φ ∈ T2. 

(G2) If Mod(T1)∩Mod(T2) ≠ Ø, then Mod(T1◦T2) = 
Mod(T1)∩Mod(T2). 
(G3) If T2 is consistent, then Mod(T1◦T2) ≠ Ø. 
(G4) If Mod(T) = Mod(T1) and Mod(T’) = Mod(T2), 

then Mod(T ◦T’) = Mod(T1◦T2). 

(G5) Mod(T1◦T2)∩Mod(T3)⊆Mod(T1◦(T2∪T3)). 
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(G6) If Mod(T1◦T2)∩Mod(T3) is not empty, then 

Mod(T1◦(T2∪T3))⊆Mod(T1◦T2)∩Mod(T3). 
(G1) guarantees that every axiom in the new TBox can be 
inferred from the result of revision. (G2) says that we do 
not change the original knowledge base if there is no conflict. 
(G3) is a condition preventing a revision from introducing 
unwarranted inconsistency. (G4) says the revision operator 
should be independent of the syntactical forms of knowledge 
bases. (G5) and (G6) together are used to ensure minimal 
change. 
 

V. CONCLUSIONS 

    A system of case-based reasoning (CBR) is based on 
domain knowledge, in addition to the base case. The 
acquisition of new domain knowledge should improve the 
accuracy of such a system. 
    This paper presents an approach to acquire domain 
knowledge based on failures of a CBR system. This approach 
has been implemented in FRAKAS.  
FRAKAS proposed a new way to perform knowledge 
acquisition in CBR systems producing solutions that are 
consistent with the domain knowledge. This prototype is 
based on a description logic representation, conservative 
adaptation is based on the principle of minimal change to a 
knowledge base that makes this change by revising the bases 
case in our work we propose an algorithm to use for revision 
on ABox (modulo a TBox) for revising a knowledge base. 
    In future work we plan to work on our Implementation 
choosing a scope and make it generic  
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