

 Knowledge Acquisition with system FrakaS-DL
Ouided.Hioual#1, Mohamed Tayeb.Laskri*2

#Department of informatics, Abbas Laghrour university – Khenchla-Algeria
hioual_ouided@yahoo.fr

*Laboratory of Computer Science LRI -Badji Mokhtar university- Annaba-Algeria
laskri@univ-annaba.org

Abstract—In Case Based Reasoning (CBR), knowledge
acquisition plays an important role as it allows to progressively
improve the system’s competencies. The case-based reasoning
(CBR) is to solve a problem by remembering and adapting past
cases already resolved. The CBR systems handle various kinds of
knowledge: the case, the domain knowledge, knowledge of
similarity and adaptation. The cases are collected in a gradual
manner when using the system and the case base is enriched
incrementally, while other types of knowledge are typically
acquired when the system design. In particular the domain
knowledge.
This paper presents an approach for acquiring domain
knowledge-based adaptation system failures. This approach has
been implemented in a prototype, called FRAKAS, using the
description logic.

Keywords —Conservative adaptation, description logic,
reasoning from case, based reasoning domain knowledge, theory
of revision.

I. INTRODUCTION

 Case-based reasoning (CBR) is a reasoning paradigm
which consists in solving new problems by adapting solutions
of previously solved problems. This process is supported by
various knowledge used to reason on cases. In particular,
adaptation knowledge is of major importance: it is used during
the retrieval step to retrieve a good source case (e.g. a case
easy to adapt) and, of course, during the adaptation step to
build the solution to the current problem. Unfortunately,
knowledge management in CBR is still a difficult problem.
 In Case Based Reasoning (CBR), knowledge acquisition
plays an important role as it allows to progressively improve
the system’s competencies. One of the approaches of
knowledge acquisition consists in performing it while the
system is used to solve a problem. An advantage of this
strategy is that it is not to constraining for the expert: the
system exploits its interactions to acquire pieces of knowledge
it needs to solve the current problem and takes the opportunity
to learn this new knowledge for future use.
 This paper presents an approach to acquire domain
knowledge of a CBR system. Specifically, this acquisition is
done in sessions of case-based reasoning: when the target
problem is solved by adapting the retrieved case, it is
presented to the user who can demonstrate the fact that the
solution is unsatisfactory and why it is, and it is the failure
situations of interest here, the solution may be inconsistent

the knowledge of the expert or may be only partial (missing
the user information in order to exploit this solution
completely).
 This new knowledge is used to repair and adaptations failed
to prevent similar failures in future arguments. Therefore, this
work concerns the adaptation stage of CBR in [1], [2].

The remainder of this paper is organized as following. In
Section 2, we present a brief review of the case-based
reasoning, we introduce and discuss the issues and objectives
of our research in Section 3. In Section 4, these objectives
were implemented in a prototype called FRAKAS. Finally,
Section 5 concludes this paper.

II. CASE BASED REASONING

 In Case based reasoning, cases are generally represented by
couples problem-solution, if a source will be denoted by srce -
case = (srce; Sol (srce)) is the part where srce problem and Sol
(srce) his party solution. The target case, where only the target
problem is known if target = (target?), The adaptation consists
in determining a solution Sol (tgt) from target srce-case for
target-case =completed (target; Sol (tgt)).
 This representation is based on the assumption that the
representation of a source case in some problem and some
solution can be uniquely independent of the target case.
 Case-based reasoning systems are knowledge-based
systems (KBS) which, if we follow Richter’s proposition [3],
make use of four distinct knowledge sources: domain
knowledge, cases, similarity knowledge and adaptation
knowledge. But one can have an unified view of the
knowledge involved in CBR systems as there exists close
relations between the different knowledge containers.

 Case based reasoning (CBR) is a paradigm of problem-
solving which uses past experiences to solve new problems.
Reuse of experience constitutes the main specificity and
strength of CBR: reasoning bases itself on remembering and
reusing past situations rather than on the exclusive use of
formal knowledge of the domain. The exploitation of past
situations is often profitable, particularly when knowledge of
the domain is incomplete: experience still offers a “basis” for
the solution. Of course CBR does not always give the ideal

PC
Typewriter
International Conference on Control, Engineering & Information Technology (CEIT'13)

Proceedings Engineering & Technology - Vol.2, pp. 158-163, 2013

Copyright - IPCO

PC
Typewriter
158

solution to the problem but, if it has the experience of this
problem, it always offers a solution.
This solution, although imperfect, is nearly always
satisfactory in real cases. The basic CBR principle, “to solve
a target problem, retrieve a source case and adapt it”, can be
summarized as in figure 1.

Fig. 1 CBR classical paradigm.

Cycle of reasoning in CBR:
The principle of CBR, reusing a past problem-solving
experience to solve a similar problem, is simple, but the
implementation of this principle remains complex and raises a
certain number of questions. How do we represent an
experience? What is a similar problem? How do we reuse an
experience and adapt it to the present situation? What can be
retained from a specific problem-solving experience?
At the highest level of generality, a general CBR cycle may be
described by the following four processes:

1. Retrieve similar cases to the problem description.
2. Reuse a solution suggested by a similar case.
3. Revise or adapt that solution to better fit the new problem
if necessary.
4. Retain the new solution once it has been confirmed or
validated.

A new problem is solved by retrieving one or more
previously experienced cases, reusing the case in one way or
another, revising the solution based on reusing a previous
case, and retaining the new experience by incorporating it into
the existing knowledge-base (case-base). The four processes
each involve a number of more specific steps, which will be
described in the task model. In figure 2, this cycle is
illustrated

Fig. 2 A CBR cycle (Aamodt-Plaza-94)

An initial description of a problem (top of figure) defines a
new case. This new case is used to RETRIEVE a case from
the collection of previous cases. The retrieved case is
combined with the new case - through REUSE - into a solved
case, i.e. a proposed solution to the initial problem. Through
the REVISE process this solution is tested for success, e.g. by
being applied to the real world environment or evaluated by a
teacher, and repaired if failed. During RETAIN, useful
experience is retained for future reuse, and the case base is
updated by a new learned case, or by modification ofsome
existing cases[9],[20].

 We note SDK (system domain knowledge domain) : SDK
expresses knowledge believed to be correct but not necessarily
complete. In particular, SDK gives necessary conditions for a
case to be lawful. [3], [4].

A. Acquiring CBR knowledge
Solutions produced by CBR systems may not be satisfactory
because of either a lack of sufficient knowledge or imperfectly
described knowledge, leading to reasoning failures.Thus,
many research work address the learning component in CBR
systems along several perspectives.
One of these perspectives characterizes the different
knowledge containers targeted by the learning process [3]:
case’s vocabulary, cases, similarity and solution
transformation (i.e. adaptation knowledge). Some approaches
consider similarity and adaptation knowledge as distinct and
learn them separately [7]. We defend the idea that, ideally,
only domain and adaptation knowledge should be learned and
similarity knowledge should be deduced from adaptation
knowledge.
Another perspective characterizes the knowledge source used
by the learning process [8]. Some approaches use the content
of the knowledge containers, in particular those who rely on
machine-learning or "off-line" techniques in order to explicit
knowledge. Other "on-line" approaches, by contrast, aim at
acquiring new knowledge that is not already in the system
through interactions with the environment . Learning takes
place during the use of the system and aims at acquiring

PC
Typewriter
159

domain knowledge. The evaluation of the adapted solution
may highlight the fact that it does not meet the requirements
of the target problem. In this situation, a reasoning failure
occurs and is handled by a learning process. The expert is
involved in the identification of faulty knowledge and a repair
process is triggered to correct it.

III. PROBLEMATIC AND OBJECTIVES

 Between the domain knowledge (SDK) available to the
CBR system, and knowledge of the expert, there is a big
difference from [5], since the domain knowledge are available
but are not sufficient, it is therefore necessary to acquire new
ones. This problem is impossible to solve completely for most
applications, but we can still learn new domain knowledge
thanks to the expert.
 The general principle here is to do reasoning and learning
takes place when using the system and aims to acquire domain
knowledge. When the solution is evaluated it may be unable
to solve the problem: it is then a failure of reasoning that is the
subject of a process of learning from failure. The expert
comes to identify parts of solution inconsistent.
 Two types of failures were identified in this paper and lead
to acquisition of knowledge:
-Failed due to an inconsistency of the solution with the
knowledge of the expert. The expert said that, given what he
knows of domain knowledge, the affirmation of the solution
of the target problem is inconsistent. This may mean that the
solution itself is incoherent.
-Failure to have a solution that is only partial. If the solution
proposed by the adaptation target is partial, and therefore not
fully satisfactory, the interaction with the expert can help
clarify it.[21]
 In this paper we used system FRAKAS, so enhancing the
use of this system in a real situation and to reduce complexity
and facilitate the work of the expert, it will be necessary to
install a new version of FRAKAS, using the description logic.
Thus, we proposed an algorithm for knowledge base revision
in description logics. We chose the formalism of Description
logic because of its ability to dual representation and
reasoning about knowledge.

IV. FRAKAS (FAILURE ANALYSIS FOR DOMAIN KNOWLEDGE

ACQUISITION)

 FRAKAS is an illustration of the FIKA principles (Failure-
driven Interactive Knowledge Acquisition, FIKA defines a
general approach for interactive and opportunistic acquisition
of knowledge in case-based reasoning.). It defines strategies to
interactively learn domain knowledge on-line, by exploiting
reasoning failures and their correction. The learning process
occurs during a CBR session. The target problem is
automatically solved by adaptation of a retrieved case and
then, the proposition is presented to the “user” who,
depending on his expertise level, is supposed to highlight the
part, in the proposition, that is not satisfactory.
 FRAKAS offers an interactive mechanism that aims at
incorporating new pieces of domain knowledge. The new
knowledge is then added to the system to prevent similar

failures occurring in future reasonings and, especially, to
perform a new adaptation with a more complete knowledge.
As a result, the system progressively learns new pieces of
knowledge and becomes more and more effective.[6][10]
 FRAKAS uses a technique of guided retrieval adaptability.
When a source case is remembered, it uses conservative
adaptation to infer Sol (tgt) from the target problem and
source case. The conservative adaptation is to modify the
source case in a minimal way to be both consistent with the
knowledge base and the target problem. The result of the
adaptation is presented to the expert who can then detect an
inconsistency of the proposed solution with personal
knowledge.
The FRAKAS approach aims to facilitate the acquisition of
domain knowledge. This knowledge, although used to adapt
cases, is not supposed to be linked to the cases. In FRAKAS,
the identification of knowledge to be acquired is done, not by
analysing the reasoning, but by analysing the solution. In the
case of failure, the solution is analysed by the expert who
must identify inconsistencies in the solution using his own
knowledge. The system is able to infer, from the analysis of
these inconsistencies, new knowledge which will allow it to
avoid repeating the mistake in future.

Algorithm of FRAKAS.
Input: tgt, SDK, CB
 (srce; Sol(srce)) Retr ieval(SDK; tgt; CB)
Sol(tgt) Adaptation(SDK; (srce; Sol(srce)); tgt)
{Taking into account type 1 failures}
while Sol(tgt) is inconsistent do
 The expert points out Inc {Inc: the inconsistency}
 The expert gives a textual explanation of the failure (stored
 for later use)
 ’Inc is false’ is integrated to SDK
 Sol(tgt) Adaptation(SDK; (srce; Sol(srce)); tgt)
end while
{Taking into account type 2 failures}
 if Sol(tgt) is fully specified then
 Exit
end if
 while There is an inconsistent interpretation of Sol(tgt) do
 {Justification of this loop:}
 {The modification of the knowledge base can generate new
 inconsistent adaptations}
 for all inconsistent interpretation do
 The expert points out Inc
 The expert gives a textual explanation of the failure
 (stored for later use)
 ’Inc is false’ is integrated to SDK
 end for
 Sol(tgt) Adaptation(SDK; (srce; Sol(srce)); tgt)
end while

Reasoning in FRAKAS.
An assumption is made that the CBR system is capable of
performing consistent reasoning in the cases using the
available domain knowledge. The proposed built by the

PC
Typewriter
160

system is presented to the oracle who is able to decide if it is
valid or not (i.e., if the proposition works or not). The role of
the expert is then to highlight faulty knowledge if the
proposition is not satisfactory, which amounts to highlighting
the parts of the proposition that are not correct[10].
The knowledge acquisition in FRAKAS is:
- Opportunistic, as it exploits failures to trigger a learning
process;
- Interactive, as it involves the user during the CBR session,
through interactions;
- Incremental, as pieces of knowledge are added progressively
to the domain knowledge.
The knowledge learned by a system implementing the
FRAKAS principles is used to repair failed adaptations and to
improve the quality of the solution proposed for the current
problem. This knowledge is also stored and reused to prevent
similar failures from occurring again in further reasonings.

FRAKAS principles
The FRAKAS principles are illustrated in figure 3

Fig. 3 FRAKAS principles

This figure describes the main FRAKAS principles and the
links with the knowledge base (on the right of the figure).
Circles represent cases, rounded rectangles are processes (the
expert analysis involves interactions between the expert and
the system). Inc is a piece of knowledge that is built during
the reasoning cycle and that is going to be added to the
knowledge base.
The CBR process exploits a knowledge base to produce a
candidate solution. When the candidate solution is judged not
valid (i.e. it does not work) by the oracle, the expert has to
identify a subset of inconsistent knowledge (denoted Inc on
the figure). From this subset of knowledge, the system is able
to learn a new piece of knowledge. This new piece of
knowledge is added to the knowledge base. The improved
knowledge base allows the system to produce a new candidate
solution for the current problem. The process is iterated until
the expert validates a solution proposed by the systems, i.e.
until the system finds a working solution[10].
The CBR process implemented in FRAKAS exploits a case
base together with the system domain knowledge base
(denoted by SDK). The cases contained in the case base are
assumed to be consistent with SDK, they often contain pieces

of knowledge coming from experience. These pieces of
knowledge cannot always be explained by the domain
knowledge but are nonetheless often very useful, that is why
they are valuable.
A. The used Formalism : ALC Description Logic
 Description Logics (DL) were first developed to provide a
formal meaning, declarative semantic networks and frames,
and to show how such structured representations can be
provided with effective tools of reasoning. They form a
family of knowledge representation formalisms that can be
used to represent and reason about the knowledge of an
application domain in a structured and formally well
understood. They are increasingly important in knowledge
representation. [12]
Syntax:
 The elements of the representation language ALC are the
concepts, roles, bodies and forms. Intuitively, a concept
represents a subset of the domain of interpretation. A concept
is either an atomic concept (ie,d. A concept name), or a
conceptual expression of one of the following form:

Т, ⊥, C ⊓ D, ￢C, C ⊔ D,∀ r .C, ∃ r .C where C and D are

concepts (atomic or not) and r is a role. In a concept can be
associated with a first-order formula with one free variable x.
 For BC 'Ψ' in LAC is a finite set of formulas ALC. The
terminological part (TBox or terminology box) of Ψ is the set
of its formulas terminology. The assertionnelle party (or for
ABox assertional box) of Ψ is the set of its formulas
assertionnelles.

Fig. 4 Architecture of a knowledge representation system based on
Description Logics.

 An interpretation is a pair I = (∆I , ·I) where ∆I is a
nonempty set (the domain of interpretation) and where ·I
associated with a concept C a subset CI of ∆I , a role r in a
relationship binary rI on ∆I (for x, y Є ∆I , x is related to y is

PC
Typewriter
161

denoted by rI , (x, y) Є rI) and, to an instance has an element
aI of rI. [12]
Given an interpretation I, we say that I satisfies a concept

axiom C ⊑ D (respectively, a role inclusion axiom R ⊑ S) if
CI
⊆ DI (respectively, RI ⊆ SI). An interpretation I is called a

model of a TBox T , written I |= T , iff it satisfies each axiom
in T . We use Mod(T) to denote all the models of a TBox T .
Two TBoxes T1 and T2 are equivalent, written T1 ≡ T2, iff
Mod(T1) = Mod(T2). A named concept C in a terminology T is
unsatisfiable iff, for each model I of T , CI = Φ. A
terminology T is inconsistent iff it does not have a model, and
it is incoherent iff there exists an unsatisfiable named concept
in T . Incoherence is a kind of logical contradiction which has
been widely discussed. When there is a concept in a TBox, if
the TBox is inconsistent, then it must be incoherent.
Inferences:
 DL system doesn’t store only terminologies and assertions,
but also offers the services of inference. Mainly dependent on
the reasoning in a DL is to discover implicit knowledge from
explicit knowledge by inference. The services are also
inference made on all the TBox and as well as the ABox.
Basic inferences about the TBox:
Given a TBox T, C and D two concepts, then the typical tasks
of reasoning on T consist of:
- Checking satisfiability of a concept: A concept C is
satisfiable (or consistent) with respect to a TBox T if there
exists a model I of the TBox T such that CI ≠ Ø; (I is a model
C) , we write I | = C
- Checking subsumption relation between two concepts: C
subsumes D (D is considered the concept more general than
C), written C ⊑D, with respect to TBox T iff CI⊑ DI for all

models I of the TBox T In this case, we write C ⊑T D or T | =

C ⊑ D. For example, PARENT ⊑PERSON. The subsumption

relation presents the service more complex classification:
given a concept C and a TBox T, for all concepts D of T
determine whether D subsumes C or D is subsumed by C.
Intuitively, this determination research relationships implicit
in the terminology. In particular, the classification, a basic
task in building up a new terminology that expresses the
concept in the appropriate place in the taxonomic hierarchy of
concepts, can be accomplished by checking the subsumption
relation between each concept defined in the hierarchy and
expression of the new concept.
-Verification of equivalence between two concepts: Two
concepts C and D are equivalent, written C ≡ D, with respect
to T iff CI

≡DI for all models I of TBox T. In this case, we
write C≡T D or T | = C ≡ D
- Verification of disjunction between two concepts: Two
concepts C and D are disjoint, written C ≠ D, compared to a
TBox T iff CI

∩DI =Ø, for all models I of TBox T.
In fact, checking the satisfiability of concept is a main
inference. other inferences for concepts can be reduced to (in)
satisfiability and vice versa.
Basic inferences about the ABox:

 ABox reasoning about a focus on testing the correctness of
a domain model. Must perform two tasks:
- Checking instance: whether an individual has an ABox A is
an instance of a given concept description C (a Є CI), written
A | = C (a).
- The consistency check: An ABox A is consistent with
respect to a TBox T, if there is an interpretation that is a
model of both A and T.
Satisfiability of an ABox is to test whether, given a TBox T,
ABox A has a model. Important inferences can be reduced to
this inference, p. ex. T | = C ⊑ D iff A = {(CП￢D)(a)} is not

satisfiable modulo T, where a is a new instance (can’t be
found in (C П￢D), or in T). [11]

A. Conservative Adaptation
 Adaptation is a step of some case-based reasoning (CBR)
systems that consists in modifying a source case in order to
suit a new situation, the target case. An approach to adaptation
consists in using a belief revision operator, i.e., an operator
that modifies minimally a set of beliefs in order to be
consistent with some actual knowledge[19] .
 The idea is to consider the belief “The source case solves
the target case” and then to revise it with the constraints given
by the target case and the domain knowledge.
 The adaptation performed by FRAKAS is conservative
adaptation (CA) (see [14] for more details). In this adaptation,
the approach is to make changes "minimum" of the source
case to be consistent with both the target problem and the
domain knowledge. It is formalized through the notion of
revision operator [11],[17],[18],[15], [13]: a revision operator
'○' combines two knowledge bases Ψ and µ knowledge base Ψ
○ µ which, intuitively , is obtained by minimal change on Ψ to
be consistent with µ.[16]
 In this paper, We consider only revision of terminologies in
DLs and we have adapted the Dalal revision operator for
revising terminologies
To adapt Dalal’s revision operator to DLs, we need to define
the ”difference set” between two models. By treating each
concept name as a propositional variable, we can define the
difference between two models in DLs in a similar way as the
difference set between two models in propositional logic.
Suppose we want to revise a TBox T1 using another one T2.
Following the idea of Dalal’s revision operator, in our revision
operator, we revise some models of T1 to make them as
models of T2.(see [22,23] for more details)
We consider postulates for revision operators in DLs given in
[22], which are reformulated from Katsuno and Mendelzon’s
postulates (KM postulates) in [24].

(G1) Mod(T1◦T2) ⊆ Mod(φ) for all φ ∈ T2.

(G2) If Mod(T1)∩Mod(T2) ≠ Ø, then Mod(T1◦T2) =
Mod(T1)∩Mod(T2).
(G3) If T2 is consistent, then Mod(T1◦T2) ≠ Ø.
(G4) If Mod(T) = Mod(T1) and Mod(T’) = Mod(T2),

then Mod(T ◦T’) = Mod(T1◦T2).

(G5) Mod(T1◦T2)∩Mod(T3)⊆Mod(T1◦(T2∪T3)).

PC
Typewriter
162

(G6) If Mod(T1◦T2)∩Mod(T3) is not empty, then

Mod(T1◦(T2∪T3))⊆Mod(T1◦T2)∩Mod(T3).
(G1) guarantees that every axiom in the new TBox can be
inferred from the result of revision. (G2) says that we do
not change the original knowledge base if there is no conflict.
(G3) is a condition preventing a revision from introducing
unwarranted inconsistency. (G4) says the revision operator
should be independent of the syntactical forms of knowledge
bases. (G5) and (G6) together are used to ensure minimal
change.

V. CONCLUSIONS

 A system of case-based reasoning (CBR) is based on
domain knowledge, in addition to the base case. The
acquisition of new domain knowledge should improve the
accuracy of such a system.
 This paper presents an approach to acquire domain
knowledge based on failures of a CBR system. This approach
has been implemented in FRAKAS.
FRAKAS proposed a new way to perform knowledge
acquisition in CBR systems producing solutions that are
consistent with the domain knowledge. This prototype is
based on a description logic representation, conservative
adaptation is based on the principle of minimal change to a
knowledge base that makes this change by revising the bases
case in our work we propose an algorithm to use for revision
on ABox (modulo a TBox) for revising a knowledge base.
 In future work we plan to work on our Implementation
choosing a scope and make it generic

REFERENCES
[1] A. Aamodt et E. Plaza. “Case-based Reasoning” : Foundational Issues,

Methodological Variations, and System Approaches. AI
Communications 7(1) :39–59, 1994.

[2] A. Cordier, B. Fuchs, and A. Mille. Engineering and Learning of
Adaptation Knowledge in Case-Based Reasoning. In Proceedings of
the 15th International Conference on Knowledge Engineering and
Knowledge Management (EKAW-06), pages 303–317, 2006.

[3] Blansché, A., Cojan, J., Dufour-Lussier, V., Lieber, J., Molli, P.,Nauer,
E., Skaf-Molli, H. and Toussaint, Y. Taaable 3 : “Adaptation of
Ingredient Quantities and of Textual Preparations”. In Workshops of
the 18th International Conference on Case-Based Reasoning (ICCBR-
10). 2010

[4] B. Fuchs, J. Lieber, A. Mille, and A. Napoli. A general strategy for
adaptation in casebased reasoning. Technical Report RR-LIRIS-2006-
016, LIRIS UMR 5205 CNRS/INSA de Lyon/University Claude
Bernard Lyon 1/University Lumiere Lyon 2/Ecole Centrale de Lyon,
2006.

[5] B. Smyth and M.T. Keane. Retrieving Adaptable Cases. In S.Wess, K.-
D. Althoff, and M.M. Richter, editors, Topics in Case-Based
Reasoning – First European Workshop (EWCBR’93), Kaiserslautern,
LNAI 837, pages 209–220. Springer, Berlin, 1994.

[6] Badra, F . “Extracting adaptation knowledge in case-based reasoning” .
These, University Henri Poincaré - Nancy I. (2009)

[7] D.B Leake, A. Kinley, and D. Wilson. Multistrategy learning to apply
cases for case-based reasoning. In Third International Workshop on
Multistrategy Learning, pages 155–164, Menlo Park, CA, 1996. AAAI
Press.

[8] J. Lieber. “Contributions to the design of systems-based reasoning
case” . These, University Henri Poincaré - Nancy I (2008).

[9] J. McCarthy. “Epistemological Problems of Artificial Intelligence”. In
Proceedings of the 5th InternationalJoint Conference on Artificial

Intelligence (IJCAI’77), Cambridge (Massachussetts), pages 1038–
1044,1977.

[10] A. Cordier. “Interactive and Opportunistic Knowledge Acquisition in
Case-Based Reasoning” .Thèse University de Lyon (2008).

[11] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, et P. Patel-
Schneider, editors. The Description Logic Handbook. Cambridge
University Press, cambridge, UK, 2003.

[12] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D. et Patel-
Schneider, P. F.,”The Description Logic Handbook: Theory,
Implementation, and Applications”. Cambridge University Press.
(2003).

[13] Meyer, T., Lee, K. et Booth, R. Knowledge integration for description
logics. In Proceedings of the AAAI'05, pages 645_650 (2005).

[14] J. Lieber. “A Definition and a Formalization of Conservative
Adaptation for Knowledge-Intensive Case- Based Reasoning –
Application to Decision Support in Oncology” (A Preliminary Report).
LORIA, 2006.

[15] C. E. Alchourrón, P. Gärdenfors, et D. Makinson. “On the logic of
theory change : partial meet functions for contraction and revision.”
Journal of Symbolic Logic, 50 :510–530, 1985.

[16] M. d’Aquin, J. Lieber, et A. Napoli. “Adaptation Knowledge
Acquisition; a Case Study for Case-Based Decision Support in
Oncology”. Computational Intelligence (an International Journal),
22(3/4) :161–176, 200

[17] H. Katsuno et A. Mendelzon. “Propositional knowledge base revision
and minimal change”. Artificial Intelligence, 52(3) :263–294, 1991.

[18] J. Cojan. “Application of the theory of knowledge revision in case-
based reasoning”. Thèse University Henri Poincaré – Nancy 1 2011

[19] Qi, G., Liu, W. et Bell, D. A. (2006). “Knowledge base revision in
description logics. ” In Fisher, M., van der Hoek, W., Konev, B. and
Lisitsa, A., éditeurs : JELIA, volum 4160 de Lecture Notes in
Computer Science, pages 386_398. Springer.

[20] Wilke, W., Vollrath, I., Althoff, K.-D., and Bergmann, R. (1996). A
Framework for Learning Adaptation Knowledge Based on Knowledge
Light Approaches. In Proceedings of the workshop of Adaptation in
Case-Based Reasoning (at ECAI’96), pages 235–242, Budapest.

[21] Cordier, A., Fuchs, B., Lieber, J., and Mille, A. (2007). Acquisition de
connaissances du domaine d’un système de RàPC : une approche
fondée sur l’analyse interactive des échecs d’adaptation - le système
FrakaS. In Cordier, A. and Fuchs, B.,
editors, Actes du 15ème atelier de raisonnement à partir de cas
(RàPC’07), pages 57–70, Grenoble. Plateforme AFIA.

[22] G. Qi,W. Liu, and D. Bell. Knowledge baserevision in description
logics. In Proc. of JELIA, pages 386–398, 2006.

[23] M. Moretto Ribeiro and R. Wassermann. Base revision in description
logics – preliminary results. In Proc. of IWOD, pages 69–82, 2007.

[24] Katsuno and A.O. Mendelzon. Propositional knowledge base revision
and minimal change. Artif. Intell., 52(3):263–294, 1992.

PC
Typewriter
163

